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SECTION A — (5 x 6 = 30 marks)
Answer ALL questions.

Define a linear vector space. And prove that

- the set of all complex numbers forms a linear

vector space over a complex field.

Or
8 -6 2
Reduce the matrix |[-6 7 —4/| into a
2 =4 '3

diagonal matrix.

Define the Kronecker delta symbol and
discuss its properties.

 Or

With an example, explain the quotient rule"
in tensor analysis. ol
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(a)

(b)

(a)

(b)

(b)

Obtain the generating function >f J (x).

Or

Find the series solution around an ordinary
point of the differenticl _equation
a2y S ; e
lind (/l - xz) y=0, where A is a constant.

dax?
Find the Green's function required for the

&
boundary value problem %+k2y=f(xz)
£

where f(x) is a known func;tion. of x and y(x) e

satisfies the boundary conditions y(0) = 0 and
y(L)=0. N

Or

Obtain the eigen function 2xpansion of

Green’s function.

Obtain the moment generating function of

binomial distribution.
Or

Fit a Poisson’s distribution to =he following
data and calculate theoretical frequencies :

Birth : 0 [T 3 A
Frequency: 122 60 156 2 1
2 : 3127

10.

SECTION B — (3 x 15 = 45 marks)
Answer any THREE questions.

Explain the Gram-Schmidt orthogonalization
process to obtain the mutually orthonormal
vectors and use it to obtain the same for the
following linearly independent set of n- tuples :

v, =(1,0,0,...0), w, =(1,1,0,...0), wy = (1,1,1,...0)
and y, =(1,1,1,...1)

Obtain the tensor form of the operators Gradient,

Divergence, Laplacian and Curl.

Prove the following recurrence relations for

Laguerre polynomials ;
@) (+1)L,.,(x)+@n+1-%)L (x)-L, (x).

() xL,'(x)+nL,(x)-nL, ,(x).

© LY=-Y" L.

Explain the Green’s function method of solving one
dimensional Sturm — Liouville type problems.

(a) Derive the normal distribution as the
limiting case of binomial distribution.

(b) Obtain the standard form of the normal
curve and discuss its properties.
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